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ABSTRACT

In this work, we propose a robust Head-Related Transfer Function

(HRTF)-based polynomial beamformer design which accounts for

the influence of a humanoid robot’s head on the sound field. In addi-

tion, it allows for a flexible steering of our previously proposed ro-

bust HRTF-based beamformer design. We evaluate the HRTF-based

polynomial beamformer design and compare it to the original HRTF-

based beamformer design by means of signal-independent measures

as well as word error rates of an off-the-shelf speech recognition sys-

tem. Our results confirm the effectiveness of the polynomial beam-

former design, which makes it a promising approach to robust beam-

forming for robot audition.

Index Terms— Spatial filtering, robust superdirective beam-

forming, polynomial beamforming, white noise gain, signal en-

hancement, robot audition, head-related transfer functions

1. INTRODUCTION

Spatial filtering techniques are a widely used means to spatially fo-

cus on a target source by exploiting spatial information of a wave

field which is sampled by several sensors at different positions in

space.

When spatial filtering techniques are applied to a robot audition

scenario, i.e., when the microphones are mounted on a humanoid

robot’s head, the influence of the head on the sound field has to be

taken into account by the beamformer design in order to obtain a

satisfying spatial filtering performance. To this end, Head-Related

Transfer Functions (HRTFs)1 can be incorporated into the beam-

former design as steering vectors, see, e.g., [1, 2, 3]. In [4], Mabande

et al. proposed a Robust Least-Squares Frequency-Invariant (RLSFI)

beamformer design which allows the user to directly control the

tradeoff between the beamformer’s spatial selectivity and its robust-

ness. Recently, we extended this design to an HRTF-based RLSFI

beamformer design by following the approach described above [5].

Despite all advantages of the beamformer designs in [4, 5], a clear

disadvantage is that whenever the beamformer is steered to another

direction, a new optimization problem has to be solved which makes

it unattractive for real-time processing. To overcome this limita-

tion, Mabande et al. proposed a Robust Least-Squares Frequency-

The research leading to these results has received funding from the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no 609465.

1In the context of this work, HRTFs only model the direct propagation
path between a source and a microphone mounted on a humanoid robot’s
head, but no reverberation components.

Invariant Polynomial (RLSFIP) beamformer design [6] as extension

of [4], which allows for a flexible steering of the beamformer.

In this work, we extend the HRTF-based RLSFI beamformer

design [5] to the concept of polynomial beamforming in order to

allow for a flexible steering of the HRTF-based beamformer in a

robot audition scenario.

The remainder of this article is structured as follows: In Sec-

tion 2, the HRTF-based RLSFIP beamformer design is introduced.

Then, an evaluation of the new HRTF-based polynomial beamformer

design is presented in Section 3. Finally, conclusions and an outlook

to future work are given in Section 4.

2. HRTF-BASED ROBUST POLYNOMIAL

BEAMFORMING

2.1. Concept of polynomial beamforming

In Fig. 1, the block diagram of a Polynomial Filter-and-Sum Beam-

former (PFSB), as presented in [6, 7, 8], is illustrated. It consists of a

beamforming stage containing P + 1 Filter-and-Sum Units (FSUs),

followed by a Polynomial Postfilter (PPF). The output signal yp[k]
of the p-th FSU at time instant k is obtained by convolving the mi-

crophone signals xn[k], n ∈ {0, . . . , N − 1} with the FSU’s Finite

Impulse Response (FIR) filters wn,p = [wnp,0, . . . , wnp,L−1]
T of

length L, followed by a summation over all N channels. Operator

(·)T represents the transpose of vectors or matrices, respectively. In

the PPF, the output yD[k] of the PFSB is obtained by weighting the

output of each FSU by a factor Dp and summing them up:

yD[k] = y0[k] +Dy1[k] +D2y2[k] + . . .+DP yP [k]. (1)

Hence, the output signal of each FSU can be seen as one coeffi-

cient of a polynomial of order P with variable D. The advantage

of a PFSB is that the steering of the main beam is accomplished by

simply changing the scalar value D, whereas the FIR filters of the

FSUs can be designed beforehand and remain fixed during runtime.

A more detailed explanation of how the steering is controlled by D
is given in Section 2.2.

The beamformer response of the PFSB is given as [6]:

BD(ω,φ, θ) =
P
∑

p=0

Dp

N−1
∑

n=0

Wn,p(ω)gn(ω, φ, θ), (2)

where Wn,p(ω) =
∑L−1

l=0 wnp,le
−jωl is the Discrete-Time Fourier

Transform (DTFT) representation of wn,p, and gn(ω, φ, θ) is the

sensor response of the n-th microphone to a plane wave with fre-

quency ω traveling in the direction (φ, θ). Variables φ and θ denote
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Fig. 1. Illustration of a polynomial filter-and-sum beamformer after

[6].

azimuth and elevation angle, and are measured with respect to the

positive x-axis and the positive z-axis, respectively, as in [9].

2.2. HRTF-based robust least-squares frequency-invariant

polynomial beamforming

The main goal of the proposed HRTF-based RLSFIP beamformer

design is to jointly approximate I desired beamformer responses

B̂Di
(ω, φ, θ), each with a different Prototype Look Direction (PLD)

(φi, θi), i = 0, . . . , I − 1, by the actual beamformer response

BDi
(ω, φ, θ), where Di = (φi−90)/90, in the Least-Squares (LS)

sense. Hence, Di lies in the interval −1 ≤ Di ≤ 1, where, for ex-

ample, D = 0 and D = −1 steer the main beam towards φ = 90◦

and φ = 0◦, respectively. For values of D which do not correspond

to one of the PLDs, the PPF will interpolate between them, as ex-

pressed in (1). In this work, we apply polynomial beamforming only

in the horizontal dimension. Thus, Di only depends on the azimuth

angle, whereas θi is constant for all PLDs. The extension to two-

dimensional beam steering is an aspect of future work. In addition

to the LS approximation, a distortionless response constraint and

a constraint on the White Noise Gain (WNG) is imposed on each

of the I PLDs. The approximation is carried out for a discrete set

of Q frequencies ωq, q ∈ {0, . . . , Q − 1} and M look directions

(φm, θm), m ∈ {0, . . . ,M − 1} (where, in this work, θm remains

fixed) in order to obtain a numerical solution. Hence, the optimiza-

tion problem of the HRTF-based RLSFIP beamformer design can

be expressed as:

argmin
wf (ωq)

I−1
∑

i=0

‖G(ωq)Diwf(ωq)− b̂i‖
2
2, (3)

subject to I constraints on the corresponding WNG and response in

the desired look direction, respectively:

|aT
i (ωq)Diwf(ωq)|

2

‖Diwf(ωq)‖22
≥ γ > 0, a

T
i (ωq)Diwf(ωq) = 1,

∀i = 0, . . . , I − 1. (4)

where b̂i = [B̂Di
(φ0, θ0), . . . , B̂Di

(φM−1, θM−1)]
T

is a vector of

dimension M × 1 containing the i-th desired response for all M
angles, matrix [G(ωq)]mn = gn(ωq, φm, θm), vector ai(ωq) =
[g0(ωq, φi, θi), . . . , gN−1(ωq, φi, θi)]

T is the steering vector which

contains the sensor responses for the i-th PLD (φi, θi), and vector

wf(ωq) = [W0,0(ωq), . . . , WN−1,P (ωq)]
T of dimension N(P +

1) × 1 contains all filter coefficients. Furthermore, Di = IN ⊗
[D0

i , . . . , D
P
i ] is an N ×N(P + 1) matrix, where IN is an N ×N

identity matrix and ⊗ denotes the Kronecker product. Operator ‖·‖2
denotes the Euclidean norm of a vector. The optimization problem

in (3), (4) can be interpreted as follows: Equation (3) describes the

LS approximation of the I desired responses B̂Di
(ωq, φm, θm) by

the actual beamformer response. The first part of (4) represents the

WNG constraint which is imposed on each of the I PLDs. γ is the

lower bound on the WNG and has to be defined by the user. Hence,

the user has the possibility to directly control the beamformer’s ro-

bustness against small random errors like sensor mismatch or po-

sition errors of the microphones. The second part of (4) ensures a

distortionless beamformer response for each of the I PLDs.

As in [5], we include measured HRTFs in (3) and (4) instead

of the free-field-based steering vectors (which are only based on the

microphone positions and the look directions). By doing this, the

beamformer design can account for the influence of the humanoid

robot’s head on the sound field which would not be the case if we

used free-field-based steering vectors as in [6]. The sensor responses

are given as gn(ωq, φm, θm) = hmn(ωq), where hmn(ωq) is the

HRTF modeling the propagation between the m-th source position

and the n-th microphone, mounted at the humanoid robot’s head,

at frequency ωq . Matrix G(ωq) consists of all HRTFs between the

M look directions and the N microphones, and ai(ωq) contains the

HRTFs corresponding to the i-th PLD.

The optimization problem has to be solved for each frequency

ωq separately. We use the same desired response for all frequencies

for the design of the polynomial beamformer, which is indicated by

the frequency-independent entries of b̂i [4, 5, 6]. The optimization

problem in (3), (4) is formulated as a convex optimization problem

[6] and we use CVX, a package for specifying and solving convex

programs in Matlab [10], to solve it. After the optimum filter weights

at each frequency ωq have been found, FIR filters of length L are

obtained by FIR approximation, see, e.g., [11], of the optimum filter

weights using the fir2 method provided by Matlab [12].

3. EVALUATION

In the following, we evaluate the proposed HRTF-based RLSFIP

beamformer design and compare it to the HRTF-based RLSFI beam-

former design proposed in [5]. At first, the experimental setup is

introduced. Then, the two beamformer designs are compared with

respect to their approximation errors of the desired beamformer re-

sponse. Eventually, the signal enhancement performance is evalu-

ated in terms of Word Error Rates (WERs) of an Automatic Speech

Recognition (ASR) system.
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(a) Microphone positions.
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Fig. 2. Illustration of the employed microphone positions (green

circles) at the humanoid robot’s head and the source positions of the

two-speaker scenario.

3.1. Setup and parameters

The evaluated beamformers were designed for the five-microphone

robot head array in Fig. 2(a), using a WNG constraint of γdB =
−20dB and a filter length of L = 1024. For the design of the poly-

nomial beamformer, we used I = 5 PLDs φi ∈ {0◦, 45◦, 90◦, 135◦,
180◦} and a PPF of order P = 4. The set of HRTFs which is re-

quired for the HRTF-based beamformer design was measured in a

low-reverberation chamber (T60 ≈ 50ms) using maximum-length

sequences, see, e.g., [13, 14]. The HRTFs were measured for

the same five-microphone array shown in Fig. 2(a) for a robot-

loudspeaker distance of 1.1m. The loudspeaker was at an elevation

angle of θ = 56.4◦ with respect to the robot. We chose this setup

to simulate a taller human interacting with the NAO robot which is

of height 0.57m. The measurements were carried out for the robot

looking towards broadside (φ, θ) = (90◦, 90◦).

3.2. Evaluation of HRTF-based polynomial beamformer design

In this section, we investigate how well the desired beamformer re-

sponse B̂Di
(φ, θ) is approximated by the beamformer response of

either the HRTF-based RLSFI or the HRTF-based RLSFIP beam-

former. Ideally, the polynomial beamformer should be as good as

the RLSFI beamformer in the best case, because it approximates the

latter, i.e., the performance of both beamformers should be similar

when steered towards one of the I PLDs.

Fig. 3 shows the beampatterns of the HRTF-based RLSFI beam-

former and of the HRTF-based RLSFIP beamformer in Figs 3(a) and

3(b), respectively, steered towards (φld, θld) = (135◦, 56.4◦). The

resulting WNG of both beamformer designs is shown in Fig. 3(c).

Please note that the beampatterns were computed with HRTFs mod-

eling the acoustic system. Thus, they effectively show the trans-

fer function between source position and beamformer output. A

comparison of the beampatterns of the HRTF- and free-field-based

RLSFI beamformer can be found in [5], illustrating the effect of the

humanoid robot’s head as scatterer on the sound field. From Fig. 3 it

can be seen that the beampatterns of both beamformers look almost

identical. This is because the actual look direction of the beamform-

ers is equal to one of the five PLDs of the polynomial beamformer

design. One can also see that the WNG is successfully constrained

for both beamformer designs across the entire frequency range (with

some slight deviations due to the FIR approximation with finite fil-

ter length). Comparison of Figs 3(a) and 3(b) with Fig 3(c) reveals

that the beamformer’s main beam broadens when the WNG reaches

its lower bound. This points to the tradeoff between robustness and

spatial selectivity which the user can control via γ in (4).

In Fig. 4 the beampatterns of the HRTF-based RLSFI and

RLSFIP beamformers are shown for the look direction (φld, θld) =
(110◦, 56.4◦), which lies roughly half-way between two PLDs and
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Fig. 3. Illustration of beampatterns of (a) the HRTF-based RLSFI

beamformer and (b) the HRTF-based RLSFIP beamformer when the

polynomial beamformer’s look direction coincides with a PLD. The

beamformers were designed for the five-microphone robot head ar-

ray in Fig. 2(a) with look direction (φld, θld) = (135◦, 56.4◦) and

WNG constraint γdB = −20 dB. The resulting WNG is illustrated

in Subfigure (c).

can be expected to exhibit a large deviation from the desired re-

sponse. The two beampatterns now look different, which is due to

the interpolation between the PLDs by the polynomial beamformer.

While for the lower frequencies the two main beams still look sim-

ilar, the main beam of the polynomial beamformer is degraded for

higher frequencies. Moreover, it can be observed that the polynomial

beamformer cannot maintain a distortionless response in the desired

look direction across the entire frequency range. The mismatch

between RLSFI and RLSFIP beamformer also becomes obvious

when looking at the WNG in Fig. 4(c). The WNG of the RLSFIP

beamformer is generally lower than that of the RLSFI beamformer.

In addition, the polynomial beamformer also exhibits a stronger

violation of the WNG constraint than the RLSFI beamformer for

f < 500Hz.

In the following, we measure the approximation error of the

desired response B̂Dld
(φ, θ) for a certain look direction φld by the

actual beamformer response BDld
(ω,φ, θ), where Dld = (φld −

90)/90, of either the RLSFI or RLSFIP beamformer by calculating

the Mean Squared Error (MSE) which is defined as [8]:

MSE(φld) =

Q−1
∑

q=0

M−1
∑

m=0

(

|BDld
(ωq, φm, θm)| − |B̂Dld

(φm, θm)|
)2

Q ·M
.

(5)

Fig. 5 depicts the MSE of the HRTF-based RLSFI and RLSFIP

beamformer designs, calculated in steps of five degrees over the en-

tire steering range 0◦ ≤ φld ≤ 180◦. When steered to one of the

five PLDs, i.e., when φld = φi, the RLSFIP beamformer design

yields a similar MSE as the RLSFI beamformer design. In between

those PLDs, the MSE of the polynomial beamformer design is usu-

ally larger than that of the RLSFI beamformer design. The lower

MSE of the polynomial beamformer for φld ∈ {5◦, 175◦} may be

explained by side lobes of the polynomial beamformer which are

less pronounced at higher frequencies than those of the RLSFI beam-

former for these two particular look directions.
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Fig. 4. Illustration of beampatterns of (a) the HRTF-based RLSFI

beamformer and (b) the HRTF-based RLSFIP beamformer when

the polynomial beamformer’s look direction does not coincide

with one of the PLDs. The beamformers were designed for the

five-microphone robot head array in Fig. 2(a) with look direction

(φld, θld) = (110◦, 56.4◦) and WNG constraint γdB = −20 dB.

Subfigure (c) shows the resulting WNG.
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Fig. 5. Illustration of the MSE (5) of the HRTF-based RLSFI (blue

curve) and HRTF-based RLSFIP (red curve) beamformer designs,

calculated in steps of five degrees over the entire steering range.

3.3. Evaluation of signal enhancement performance

In this section, we evaluate the overall quality of the enhanced

signals at the outputs of the HRTF-based RLSFI and RLSFIP beam-

formers. In addition, we also evaluate the original free-field-based

RLSFIP beamformer [6] which assumes free-field propagation of

sound waves and, therefore, cannot account for the influence of

robot’s head on the sound field. To this end, we use WERs of an

automatic speech recognizer to evaluate the overall quality of the

enhanced signals at the beamformer outputs, since a high speech

recognition accuracy is the main goal in robot audition. As ASR

engine, we employed PocketSphinx [15] with a Hidden Markov

Model (HMM)-Gaussian Mixture Model (GMM)-based acoustic

model which was trained on clean speech from the GRID corpus

[16], using MFCC+∆+∆∆ features and cepstral mean normaliza-

tion. For the computation of the WER scores, only the letter and the

number in the utterance were evaluated, as in the CHiME challenge

[17]. Our test signal contained 200 utterances. Note that since the

ASR system was trained on clean speech, we implicitly measure the

amount of target signal distortion and interferer suppression.

We evaluated the signal enhancement in a two-speaker scenario,

where the target signal was located at positions between φld = 0◦

and φld = 180◦ in steps of 30◦. The Direction Of Arrival (DOA)

of the target signal was assumed to be known for the experiments,

i.e., no localization algorithm was applied. An investigation of the
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Fig. 6. Illustration of average target source position-specific WERs

in %, obtained at the input (red bars) and at the output of the HRTF-

based RLSFI (green bars), HRTF-based RLSFIP (yellow bars), and

free-field-based RLSFIP (cyan bars) beamformers.

HRTF-based beamformer’s robustness against DOA estimation er-

rors can be found in [18]. For each target position, seven interfering

speaker positions between φint = 15◦ and φint = 165◦ in steps of

30◦ were evaluated. An overview over all source positions is given

in Fig. 2(b), where target and interfering sources are represented by

black circles and red crosses, respectively. We created the micro-

phone signals by convolving clean speech signals with Room Im-

pulse Responses (RIRs) which we measured in a lab room with a

reverberation time of T60 ≈ 190ms and a critical distance [19] of

approximately 1.2m. The RIRs were measured with the same con-

figuration as was used for the HRTF measurements described above.

The WERs were calculated for each combination of target and in-

terfering source position and averaged over the WERs obtained for

the different interferer positions. The resulting average target source

position-specific WERs are depicted in Fig. 6. The obtained WERs

show that both HRTF-based beamformers significantly improve the

speech recognition accuracy of the input signal. Moreover, they

also outperform the free-field-based RLSFIP beamformer signifi-

cantly, which emphasizes the necessity to incorporate the effect of

the robot’s head on the sound field into the beamformer design. It

is interesting to see that the HRTF-based RLSFIP beamformer per-

forms as well as the HRTF-based RLSFI beamformer whenever the

target source is located in one of the PLDs which were used for

designing the polynomial beamformer. When this is not the case,

only a slightly higher average WER is obtained. This confirms that

the polynomial interpolation of the HRTF-based RLSFI beamformer

design works reasonably well such that it can be used in a robot au-

dition scenario.

4. CONCLUSION

In this work, we proposed an HRTF-based RLSFIP beamformer de-

sign which allows for a flexible steering of a previously proposed

robust HRTF-based RLSFI beamformer. We evaluated both beam-

former designs with respect to their corresponding approximation

error of the desired beamformer response and with respect to their

signal enhancement performance which was evaluated by means of

WERs of an ASR system. The results showed that the polynomial

beamformer design provides a good approximation of the RLSFI

beamformer design and, therefore, can be used successfully in a

robot audition scenario instead of the computationally much more

complex RLSFI beamformer design. Future work includes an inves-

tigation of the proposed HRTF-based polynomial beamformer de-

sign for more irregular sensor arrangements as well as an evaluation

with a state-of-the-art Deep Neural Network (DNN)-based ASR sys-

tem. An extension of the RLSFIP beamformer design to allow for

a flexible steering of the main beam in two dimensions is another

aspect of future work.
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