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Abstract—As part of the attempt to improve a robot’s flexibility
and adaptation by adopting biologically inspired developmental
methods, we trained a multilayer perceptron model (MLP)
to develop body representations of a humanoid robot using
proprioceptive and motor information. The information used
were the left arm joint positions, the motor commands and
the electric currents applied to these joints. By babbling its left
arm, that is by executing a self-exploration behaviour, the robot
gathered sensorimotor information for training the model. Once
having learned the relation between these different modalities, the
model can be used for running predictive processes. We present
our first training results and discuss further research possibilities.

I. INTRODUCTION

This project is part of an attempt to study and improve
robot learning skills using developmental approaches inspired
by psychology research [1]. This approach has the potential
to allow more flexibility and adaptation in unexpected and
uncertain environments [2]. Here, we focus on the develop-
ment of body representations - the agent internal model of
its own body parts’ shape, orientation and movement. Such a
model is required for executing certain motor actions such as
touching and picking up different objects [3]. Although pre-
defined models of the robot body are usually provided by the
robot manufacturer (e.g. Aldebaran Nao, iCub), those are im-
plemented explicitly and are incapable of being autonomously
refined and of adapting to unexpected circumstances.

In infants, the process of acquiring body awareness involves
active exploration of the sensorimotor space by babbling and
self-touch [4]. Inspired by this developmental process, we
applied similar mechanisms on the humanoid robot Nao. In
particular, we equipped the robot with a mechanism for au-
tonomously learning an internal body representation consisting
of a mapping between different sensory and motor modalities.
Our aim is to use the predictive capabilities provided by the
model for detecting unexpected events, such as changes in the
robot morphology or events from the external environment,
based on the knowledge that the robot has about its own
body. In this preliminary work, we present the learning of
such a body representation and the predictive capabilities of
the model.

As opposed to the iCub robot, the Nao robot does not
have any “skin” sensors for touch recognition [5]. As an
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alternative, and inspired on the human proprioceptors which
provide information from the human muscles [6], we adopted
the available motor and current measurements from the robot
joints. In mammals, such a proprioceptive information has a
crucial part in the sensorimotor system and self perception
development [7], [8].

Using an artificial neural network, the robot can develop
and maintain an internal model that can also be used for
recognising unexpected situations such as external stimuli or
body changes. This knowledge can be encoded as a mapping
between the different sensor modalities - the angle position
of the joints measured from the proprioceptive sensor (in
radians), the motor commands applied to the joints (in radians)
and the electric current consumed by the joints (an absolute
value in Ampere) [9].

The entire experiment was performed on the humanoid
robot Nao manufactured by Aldebaran Robotics. We used
it in real environments, as well as in a robot simulator -
Cyberbotics Webots. In the experiment reported here, we used
data recorded from the real robot. Training data was collected
while the robot was performing a self-exploration behaviour
of the left arm, namely random motor babbling. It was moving
its five joints (presented in Figure 1) randomly, without any
particular intention. In a preliminary experiment, we collected
information from the two shoulder joints: “shoulder pitch” and
“shoulder roll”.

Fig. 1. The left hand joints of a Nao robot: shoulder pitch, shoulder roll,
elbow yaw, elbow roll, wrist yaw. These joints allow the full motion of the
robot’s hand in space.

The data was then used to train an MLP model in a
supervised manner using back-propagation. The MLP was
constructed of a 4-node input layer, two hidden 6-node rec-
tified linear layers and a sigmoidal output layer of 2 nodes,
one for each target value. Perceived angle positions of the two
shoulder joints and the motor commands applied to them were
used as input (for a total of four variables) while the electric
currents applied to the two joints were used as the output of
the model.
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We tested the model on a second data set, recorded in the
same way as for the training set, during babbling.

II. PRELIMINARY RESULTS

The first step, presented in Figure 2, was the training of
the MLP on a set that consists of 10500 samples (about 5
minutes of random motor babbling). The training was run for
1000 epochs to ensure convergence. During this process, we
validated the performance of the model on a second set of
6000 samples (~3 minutes of random body babbling).
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Fig. 2. The average training and test errors after each epoch of training.
The curve shows signs of convergence as the change in the latest steps is
small. The decaying generalisation error graph ensures us that the model is
not overfitting the training samples, but rather relies on a true relation.

After training, we used the network to estimate again
different parts of the validation session. These estimations are
plotted in Figure 3 below the real current values.
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Fig. 3. Test estimation results. Every pair of plots shows an example of the
real (Blue) and estimated (Green) current values above the prediction error
along 40 seconds of left hand babbling. The plots on the left relate to the
shoulder pitch joint and the plots on the right relate to the shoulder roll joint.

These preliminary results are promising. The MLP model
seems to have learned how to use the joint sensor and actuator
information to effectively estimate the current magnitude of
new samples, especially the ones with high values.

III. FUTURE WORK

So far we evaluated the likelihood of developing and main-
taining a body representation of a Nao robot using the available
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proprioceptive information. After examining the preliminary
results it seems plausible. Our next step will be to examine the
model reaction to unexpected circumstances such as carrying
weight on the babbling hand or colliding it with an obstacle.
We expect to see an increase in the prediction error when
encountering these unfamiliar situations. At the same time we
would also like to include all the joints of the arm in the
training and prediction tasks. We would also like to understand
what information is actually used by the MLP for creating its
predictions. for example, as shown in figure 4, the non-trivial
relation between the sensor-actuator difference and the current
seems to be averaged and learned by the model.
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Fig. 4. The actual (Blue) and estimated (Green) current of each joint as a
function of the actuator-sensor difference.

In the future, this learning process could include other
modalities (e.g. visual) to develop more comprehensive body
representations.
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