A Variational EM Algorithm for the Separation of Moving Sound Sources

Dionyssos Kounades-Bastian, Laurent Girin, Xavier Alameda-Pineda, Sharon Gannot, Radu Horaud

Source Separation from Convolutive Mixtures

- Problem: J source signals are filtered and summed at I microphones → We want to recover the source signals!
- Existing approaches mainly deal with static setups, e.g., [Ozerov & Févotte 2010], [Duong et al. 2010], [Ozerov et al. 2012].
- We want to address dynamic setups:
 - moving sources
 - · moving microphones
 - · changes in the environment.
- Existing techniques consider either block-wise adaptation of static models, e.g., [Simon & Vincent 2012], or DOA-based discrete temporal models, e.g. [Higuchi et al. 2014].
- We propose a continuous temporal formulation based on linear dynamical systems (LDS)

Formulation of Static Mixtures

- Separate a mixture of J sources with I microphones.
- In the STFT domain, the mixture is approximated by:

• f = [1, F]: frequency bins, $\ell = [1, L]$: time frames.

Proposed Dynamic Mixture Formulation (I)

- We start from the probabilistic framework of Local Composite Gaussian Model of sources, plugged in the (static) convolutive mixture model [Ozerov & Févotte 2010]: adapted to underdetermined mixtures (I < J), EM-based estimation, the entries of \mathbf{A}_f are parameters.
- Our approach: Dynamic mixing filters: \mathbf{A}_f replaced with $\mathbf{A}_{f1}, \dots, \mathbf{A}_{f\ell}, \dots, \mathbf{A}_{fL}$. The mixing becomes:

$$\mathbf{x}_{f\ell} = \mathbf{A}_{f\ell}\mathbf{s}_{f\ell} + \mathbf{b}_{f\ell}.$$

 $\mathbf{A}_{f\ell}$ is modeled as a random latent variable.

- \rightarrow Provides compact parametrization.
- → Flexibility on the source-microphone path model.
- \rightarrow Estimate is a distribution instead of a single value.

Proposed Dynamic Mixture Formulation (II)

• $\mathbf{A}_{f1}, \dots, \mathbf{A}_{f\ell}, \dots, \mathbf{A}_{fL}$ are modeled as complex-Gaussian with first-order temporal model:

$$\begin{split} & \mathbf{A}_{f1} \sim \mathcal{N}_c\left(\text{vec}(\mathbf{A}_{f1}); \boldsymbol{\mu}_f^a, \boldsymbol{\Sigma}_f^a\right) \left(1^{\text{st}} \text{ frame prior}\right) \\ & \mathbf{A}_{f\ell} | \mathbf{A}_{f\ell-1} \sim \mathcal{N}_c\left(\text{vec}(\mathbf{A}_{f\ell}); \text{vec}(\mathbf{A}_{f\ell-1}), \boldsymbol{\Sigma}_f^a\right) \left(\text{evolution}\right). \end{split}$$

- vec(A_{fℓ}): vectorization for computational simplicity.
- $\Sigma_f^a \in \mathbb{C}^{IJ \times IJ}$ encodes temporal correlation between successive filters.
- Limited number of parameters to be estimated, IJ is small!

The NMF Source Model

- Same as in [Ozerov & Févotte 2010]:
 - Each source is a sum of elementary components:

$$s_{j,f\ell} = \sum_{k \in \mathcal{K}_i} c_{k,f\ell}$$

Component vector is assumed complex-Gaussian:

$$p(\mathbf{c}_{f\ell}) = \mathcal{N}_c\Big(\mathbf{c}_{f\ell}; \mathbf{0}, \operatorname{diag}_K(w_{fk}h_{k\ell})\Big)$$

• Hence, source vector is complex-Gaussian:

$$p(\mathbf{s}_{f\ell}) = \mathcal{N}_c \left(\mathbf{s}_{f\ell}; \mathbf{0}, \operatorname{diag}_J \left(\sum_{k \in \mathcal{K}_j} w_{fk} h_{k\ell} \right) \right).$$

- Benefits:
 - Reduces the number of source parameters to be estimated.
 - Provides very simple update rules for both w_{fk} , $h_{k\ell}$.
 - Avoids permutation of sources between frequencies.

Associated Graphical Model

Inference & EM Algorithm

Probabilistic inference of:

$$\mathcal{A} = \{\mathbf{A}_{f\ell}\}_{f,\ell=1}^{F,L}, \mathcal{S} = \{\mathbf{s}_{f\ell}\}_{f,\ell=1}^{F,L} \text{ given } \mathcal{X} = \{\mathbf{x}_{f\ell}\}_{f,\ell=1}^{F,L}.$$

- We have p(A) and p(S)
- Observation density: $p(\mathcal{X}|\mathcal{A},\mathcal{S}) = \prod_{f,\ell}^{F,L} \mathcal{N}_c(\mathbf{x}_{f\ell}; \mathbf{A}_{f\ell} \mathbf{s}_{f\ell}, \mathbf{v}_f \mathbf{I}_I)$.
- Standard EM would alternate between:
 - Inference of p(A, S|X).
 - Estimation of $heta = \left\{ \mathsf{v}_f, w_{fk}, h_{k\ell}, \boldsymbol{\mu}_f^{\mathsf{a}}, \boldsymbol{\Sigma}_f^{\mathsf{a}} \right\}_{f,\ell,k}$.
- Inference of p(A, S|X) is intractable in our case.

Variational EM

- Variational approximation: $p(A, S|X) \approx p(A|X)p(S|X)$,
- E-step split into two steps:
 - Sources E-step: Estimate p(S|X) given p(A|X)

$$p(\mathcal{S}|\mathcal{X}) \propto \exp\left(\mathbb{E}_{p(\mathcal{A}|\mathcal{X})}\left[\log p(\mathcal{X},\mathcal{A},\mathcal{S})
ight]\right)$$

• Filters E-step: Estimate p(A|X) given p(S|X)

$$\textit{p}(\mathcal{A}|\mathcal{X}) \propto \exp\left(\mathbb{E}_{\textit{p}(\mathcal{S}|\mathcal{X})}\left[\log\textit{p}(\mathcal{X},\mathcal{A},\mathcal{S})\right]\right)$$

 M-step: parameter estimation via maximization of the complete-data expected log-likelihood.

Expectation Steps

- $p(\mathcal{X}, \mathcal{A}, \mathcal{S}) = p(\mathcal{X}|\mathcal{A}, \mathcal{S})p(\mathcal{A})p(\mathcal{S})$
- Sources E-step: $p(S|X) \propto p(S) \exp \left(\mathbb{E}_{p(A|X)} \left[\log p(X|A,S)\right]\right)$ This expression yields:

$$p(\mathbf{s}_{f\ell}|\mathcal{X}) = \mathcal{N}_c(\mathbf{s}_{f\ell}; \hat{\mathbf{s}}_{f\ell}, \mathbf{\Sigma}_{f\ell}^{\eta s}),$$

with $\hat{\mathbf{s}}_{f\ell}$, $\mathbf{\Sigma}_{f\ell}^{\eta s}$ having closed-form expressions involving mixing filters posterior moments and observations (Wiener filtering).

• Filters E-step: $p(A|X) \propto p(A) \exp \left(\mathbb{E}_{p(S|X)} \left[\log p(X|A,S)\right]\right)$ This expression yields:

$$p(\mathbf{A}_{f1:L}|\mathcal{X}) \propto p(\mathbf{A}_{f1:L}) \prod_{\ell=1}^{L} \mathcal{N}_c(\boldsymbol{\mu}_{f\ell}^{\iota a}; vec(\mathbf{A}_{f\ell}), \boldsymbol{\Sigma}_{f\ell}^{\iota a}),$$

with $\mu_{f\ell}^{\iota a}$, $\Sigma_{f\ell}^{\iota a}$ having closed-form expressions involving sources posterior moments and observations. This is an LDS, solved with a Kalman smoother:

$$p(\mathbf{A}_{f\ell}|\mathcal{X}) = \mathcal{N}_c\left(\text{vec}(\mathbf{A}_{f\ell}); \text{vec}(\hat{\mathbf{A}}_{f\ell}), \mathbf{\Sigma}_{f\ell}^{\eta_a}\right).$$

Maximization Step

• The parameter set θ estimated by maximizing the complete data expected log-likelihood:

$$\mathbb{E}_{p(\mathcal{S}|\mathcal{X})p(\mathcal{A}|\mathcal{X})}\left[\log p(\mathcal{X},\mathcal{A},\mathcal{S})\right].$$

- Closed-form updates for: $\{oldsymbol{\Sigma}_f^a, oldsymbol{\mu}_f^a, \mathsf{v}_f\}_f$.
- Closed-from alternating updates for the source NMF parameters: $\{w_{fk}, h_{k\ell}\}_{f,\ell,k}$.
- The detailed derivations are in http://arxiv.org/abs/1510.04595

Experimental Setup

- Time-varying convolutive stereo mixtures containing 4 speech signals from TIMIT (length = 2s),
- Source motions simulated using BRIRs [Hummersone et al. 2013].
- Comparison with block-wise implementation of [Ozerov & Févotte 2010]
- Blind initialization of filter parameters ($\mathbf{A}_{f\ell}$ entries set to 1).
- Initialization of NMF using power spectra of true source corrupted by the other sources, with SNR of: 20dB, 10dB, 0dB.
- Performance evaluation using SDR [Vincent et al. 2007].

Quantitative Results

Average SDR (dB) scores (10 sets of speakers):

	Proposed				[Ozerov & Févotte 2010]			
SNR	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>5</i> 4
20dB	7.0	6.6	7.6	9.2	3.8	3.9	4.9	5.8
10dB	6.1	6.0	6.9	8.2	3.7	3.9	4.6	5.4
0 dB	1.8	1.7	3.4	3.8	0.7	1.0	1.7	2.3

Input SDR (dB)

s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
-7.8	-7.6	-5.3	-4.1

Effect of Circular Speed of Source

Example of Separation Results

- J = 4 sources, I = 2 microphones
- Sources move, forward and backward, along circular trajectories
- Sources 3 and 4 move twice faster than Sources 1 and 2

Conclusions and Future Work

- We addressed separation of moving acoustic sources;
- We proposed a generalization of the successful time-invariant convolutive model of [Ozerov & Févotte 2010];
- We devised a variational EM (VEM) inference procedure;
- Results obtained with 4 sources and 2 microphones (underdetermined mixtures) are quite encouraging;
- VEM is well known to be sensitive to initialization and less efficient than EM;
- We plan to thoroughly investigate initialization strategies and to improve the algorithm's speed of convergence;
- We also plan to combine diarization and separation.

Thank you!