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Source Separation from Convolutive Mixtures

• Problem: J source signals are filtered and summed at I
microphones → We want to recover the source signals!

• Existing approaches mainly deal with static setups, e.g.,
[Ozerov & Févotte 2010], [Duong et al. 2010], [Ozerov et al.
2012].

• We want to address dynamic setups:
• moving sources
• moving microphones
• changes in the environment.

• Existing techniques consider either block-wise adaptation of
static models, e.g., [Simon & Vincent 2012], or DOA-based
discrete temporal models, e.g. [Higuchi et al. 2014].

• We propose a continuous temporal formulation based on
linear dynamical systems (LDS)
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Formulation of Static Mixtures

• Separate a mixture of J sources with I microphones.

• In the STFT domain, the mixture is approximated by:

xf ` = Af sf ` + bf `

mixture [I ×1]
observed

mixing ma-
trix [I × J]
unknown!

source [J×1]
unknown!

sensor noise
[I × 1]
unknown!

• f = [1,F ]: frequency bins, ` = [1, L]: time frames.
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Proposed Dynamic Mixture Formulation (I)

• We start from the probabilistic framework of Local Composite
Gaussian Model of sources, plugged in the (static) convolutive
mixture model [Ozerov & Févotte 2010]: adapted to
underdetermined mixtures (I < J), EM-based estimation, the
entries of Af are parameters.

• Our approach: Dynamic mixing filters: Af replaced with
Af 1, . . . ,Af `, . . . ,AfL. The mixing becomes:

xf ` = Af `sf ` + bf `.

Af ` is modeled as a random latent variable.
→ Provides compact parametrization.
→ Flexibility on the source-microphone path model.
→ Estimate is a distribution instead of a single value.
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Proposed Dynamic Mixture Formulation (II)

• Af 1, . . . ,Af `, . . . ,AfL are modeled as complex-Gaussian with
first-order temporal model:

Af 1 ∼ Nc (vec(Af 1);µa
f ,Σ

a
f ) (1st frame prior)

Af `|Af `−1 ∼ Nc (vec(Af `); vec(Af `−1),Σa
f ) (evolution).

• vec(Af `): vectorization for computational simplicity.

• Σa
f ∈ CIJ×IJ encodes temporal correlation between successive

filters.

• Limited number of parameters to be estimated, IJ is small!
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The NMF Source Model

• Same as in [Ozerov & Févotte 2010]:
• Each source is a sum of elementary components:

sj,f ` =
∑

k∈Kj

ck,f `

• Component vector is assumed complex-Gaussian:

p(cf `) = Nc

(
cf `; 0, diagK (wfkhk`)

)
• Hence, source vector is complex-Gaussian:

p(sf `) = Nc

(
sf `; 0, diagJ

( ∑
k∈Kj

wfkhk`

))
.

• Benefits:
• Reduces the number of source parameters to be estimated.
• Provides very simple update rules for both wfk , hk`.
• Avoids permutation of sources between frequencies.
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Associated Graphical Model

wfk , hk` sf `

µa
f ,Σ

a
f Af `

xf ` vf

Af `−1
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Inference & EM Algorithm

• Probabilistic inference of:

A = {Af `}F ,Lf ,`=1 ,S = {sf `}F ,Lf ,`=1 given X = {xf `}F ,Lf ,`=1.

• We have p(A) and p(S)

• Observation density: p(X|A,S) =
∏F ,L

f ,` Nc(xf `; Af `sf `, vf II ).

• Standard EM would alternate between:
• Inference of p(A,S|X ).

• Estimation of θ =
{

vf ,wfk , hk`,µ
a
f ,Σ

a
f

}
f ,`,k

.

• Inference of p(A,S|X ) is intractable in our case.
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Variational EM

• Variational approximation: p(A,S|X ) ≈ p(A|X )p(S|X ),

• E-step split into two steps:
• Sources E-step: Estimate p(S|X ) given p(A|X )

p(S|X ) ∝ exp
(
Ep(A|X ) [log p(X ,A,S)]

)
• Filters E-step: Estimate p(A|X ) given p(S|X )

p(A|X ) ∝ exp
(
Ep(S|X ) [log p(X ,A,S)]

)
• M-step: parameter estimation via maximization of the

complete-data expected log-likelihood.
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Expectation Steps
• p(X ,A,S) = p(X|A,S)p(A)p(S)
• Sources E-step: p(S|X )∝ p(S) exp

(
Ep(A|X ) [log p(X|A,S)]

)
This expression yields:

p(sf `|X ) = Nc(sf `; ŝf `,Σ
ηs
f `),

with ŝf `,Σ
ηs
f ` having closed-form expressions involving mixing

filters posterior moments and observations (Wiener filtering).

• Filters E-step: p(A|X ) ∝ p(A) exp
(
Ep(S|X ) [log p(X|A,S)]

)
This expression yields:

p(Af 1:L|X ) ∝ p(Af 1:L)
L∏
`=1

Nc(µιaf `; vec(Af `),Σ
ιa
f `),

with µιaf `,Σ
ιa
f ` having closed-form expressions involving sources

posterior moments and observations. This is an LDS, solved
with a Kalman smoother:

p(Af `|X ) = Nc

(
vec(Af `); vec(Âf `),Σ

ηa
f `

)
.
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Maximization Step

• The parameter set θ estimated by maximizing the complete
data expected log-likelihood:

Ep(S|X )p(A|X ) [log p(X ,A,S)] .

• Closed-form updates for: {Σa
f ,µ

a
f , vf }f .

• Closed-from alternating updates for the source NMF
parameters: {wfk , hk`}f ,`,k .

• The detailed derivations are in
http://arxiv.org/abs/1510.04595
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Experimental Setup

• Time-varying convolutive stereo mixtures containing 4 speech
signals from TIMIT (length = 2s),

• Source motions simulated using BRIRs
[Hummersone et al. 2013].

• Comparison with block-wise implementation of
[Ozerov & Févotte 2010]

• Blind initialization of filter parameters (Af ` entries set to 1).

• Initialization of NMF using power spectra of true source
corrupted by the other sources, with SNR of: 20dB, 10dB,
0dB.

• Performance evaluation using SDR [Vincent et al. 2007].
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Quantitative Results

Average SDR (dB) scores (10 sets of speakers):

Proposed [Ozerov & Févotte 2010]
SNR s1 s2 s3 s4 s1 s2 s3 s4

20dB 7.0 6.6 7.6 9.2 3.8 3.9 4.9 5.8
10dB 6.1 6.0 6.9 8.2 3.7 3.9 4.6 5.4
0 dB 1.8 1.7 3.4 3.8 0.7 1.0 1.7 2.3

Input SDR (dB)

s1 s2 s3 s4

-7.8 -7.6 -5.3 -4.1
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Effect of Circular Speed of Source
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Example of Separation Results

• J = 4 sources, I = 2 microphones

• Sources move, forward and backward, along circular
trajectories

• Sources 3 and 4 move twice faster than Sources 1 and 2
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Conclusions and Future Work

• We addressed separation of moving acoustic sources;

• We proposed a generalization of the successful time-invariant
convolutive model of [Ozerov & Févotte 2010];

• We devised a variational EM (VEM) inference procedure;

• Results obtained with 4 sources and 2 microphones
(underdetermined mixtures) are quite encouraging;

• VEM is well known to be sensitive to initialization and less
efficient than EM;

• We plan to thoroughly investigate initialization strategies and
to improve the algorithm’s speed of convergence;

• We also plan to combine diarization and separation.
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Thank you !
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